

活き活き高齢者のための運転特性研究

一人ひとりの笑顔のために

名古屋大学 未来社会創造機構 金森 等

目次

- 1. はじめに(高齢ドライバの状況と研究課題)
- 2. 運転特性研究の目的と研究開発シナリオ
- 3. 研究成果の状況
 - (1) 高齢者運転特性データベースの整備
 - (2) 見落とし防止のための網膜投影可視化技術開発
 - (3) 呼気センシングディバイスの開発
- 4. おわりに

高齢ドライバの実態と研究課題の整理

機能低下の実態

視力低下

- · 動体視力低下
- ・視野狭窄
- •明暗順応
- ・焦点距離・・・

聴力低下

・高周波音聴力低下

判断能力の低下

- ・反応時間低下
- ・正確さの低下
- ・同時処理力の低下
- ・敢行判断の遅延、ミス

・複数同時

・程度の バラつき大 (個人差大) 運転能力 低下

高齢者特有の事故

出合い頭、右折事故など (見落とし、一時不停止)

運動機能低下

- ·筋力低下
- ・ 衝撃耐性の低下
- ・疲労耐性の低下・

高齢者の身心機能の能力低下は複数同時に起こり、程度は個人差大 ⇒ 運転能力の低下に繋がり、事故原因となっている

個人の身心機能の状態や運転の状況に合わせた支援が望まれる

運転特性研究の方針と目的

【方針】

高齢ドライバが自らの意思で、安全 安心して運転できるように、**個人の** 特性に合った最適な支援を実現する

人の状態(能力、状況)に合わせた包括的(直面の事故回避から、日頃の能力維持・改善まで)な支援を研究・具現化し、クルマや社会システムでの実装を導く

【目的】

高齢者の運転寿命を延伸するために、

- ・運転に関わる人間特性を理解し、加齢による影響を定量化すること
- ・低下機能の運転への影響を補償するため、車載システムで安全・安心を補完する支援と、人の機能・心理に働きかける支援(改善、回復トレーニング)を開発すること

ドライバ運転特性U

人間特性の理解と定量化

Output;

評価法・指標、政策提言

ヒューマンハ゛イオセンシンク゛U

生体情報の検知と改善 Output ; 疲労・ストレスセンサー・指標、低減策

支援手法開発U

支援手法の技術開発

Output;

安全・安心の車載支援コンセプト 運転診断カルテ、適性検査法 心身機能トレーニング法

社会実装

- ・新高齢者講習
- ・トレーニング含む 場の形成
- ・新システム装備(クルマの進化)

高齢者の機能低下を補完する支援開発シナリオ

Phase 1 Phase 2 Phase 3

認知・視覚特性の理解と定量化

H26年度 両眼網膜映像の可視化

網膜映像のシミュレーション

運転時の体調モニタ・異常対応

視野欠損補完、 視認性向上の支援

社会実装

- ① 支援システムの製品化
- ②コミュニティへ展開/ 高齢者講習の改定

応用

支援手法の開発

(機能低下を補完)

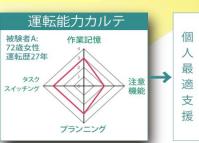
- ① 安心・安全に運転できる支援システム
- ② 運転能力維持・向上トレーニング

高齢者対応ドライバエージェント

もう少し 減速して

運転者疲労を測定・除去、運転意欲の増加

基礎


ハンフリー視野計を

用いた視野欠損検出

高齢者の運転特性理解

運転のものさし作り、運転能力評価法・指標 (300名/年) 高齢者運転特性データベース

高齢者の機能低下を補完する支援開発シナリオ

Phase 1

成果報告2

認知(視覚特性の理解と定量化)

H26年度 両眼網膜映像の可視化

網膜映像のシミュレーション

Phase 2

運転時の体調モニタ・異常対応

視野欠損補完、 視認性向上の支援

H27年度テーマ

社会実装

① 支援システムの製品化

Phase 3

②コミュニティへ展開/ 高齢者講習の改定

応用

支援手法の開発

(機能低下を補完)

- ① 安心・安全に運転できる支援システム
- ② 運転能力維持・向上トレーニング

高齢者対応ドライバエージェント

H27年度~ モックアップ作成中

もう少し 減速して 下さい

基礎

ハンフリー視野計を

用いた視野欠損検出

高齢者の運転特性理解

運転のものさし作り、運転能力評価法・指標成果報告1

高齢者運転特性データベース (300名/年)

成果報告3

適 支 援

呼気センシング

負担の減少技術

オンライン運転支援 注意喚起、情報提示

運転者疲労を測定・

フェーズIの成果報告1

高齢者運転特性データベースの構築

廻い

運転能力の評価

運転と加齢の関係

加齢変化は<u>個人差大、一人ひとりの特性にマッチ</u> した運転支援や機能トレーニングの開発に必要な データを整備し、運転能力評価を可能にする 個

高齢者運転特性データベース

アプローチ

1. 個人毎の人間特性と運転行動データを把握

・人間特性:視覚、認知機能を中心に心身機能の特性データ(300名/年、経年変化も把握)

・運転行動:実験車両による定点調査、ドライビングシミュレータによる特定運転シーンでの

詳細な行動調査、ドライブレコーダによる日頃の運転時ヒヤリ・問題点抽出

<個人毎の運転能力力ルテ>

○○に機能低下→○○を維持・向上させるには...

...システムで支援可能

2. 個人毎の運転能力力ルテを作成し、支援や訓練の方向・方策・目標設定に活用

達成状況

・26年度はデータベース構築体制を完了し150名を計測.個人毎の支援コンセプトを設計中.個人毎の機能低下に対応した支援・訓練の方法検討が可能であることを確認.

高齢者の人間特性、運転行動データ収集

写真1.実験車両での生体計測例

写真2.CRT運転適性検査

写真3.ハンフリー式の視野計測

写真4.ドライビングシミュレータ実験

写真5.有効視野検査(DHI)

写真6.認知検査(TMT-A,B)

写真7.視覚検査(静止・ 動体・夜間・コントラスト)

名古屋COIの高齢者運転特性データベース

65-88歳,105名

70-94歳, 928名 (男性577名、

女性351名) 2009より

個人に最適な運転支援開発のための運転特性データベースとして、個人毎に視覚や

H26年度は150名のデータを収集し、27年度から300名規模に拡大. 同一ドライバ

のデータを毎年収集し、経年変化も把握できるユニークなデータベースとして整備.

	<u>表1</u>	高齢者	運転特性	データ	ベースの	の特徴		
データベース名	国(機関)	認知	人間特性 視覚	身体	運転 適性	運転行動	経年	備考

データベース名	国(機関)	認知 機能	視覚 機能	身体 機能	適性	実験車 /DS	マイカー (DR)	経年	備考
COI高齢者データ ベース	未来社会 創造機構	0	0	0	0	0	0	0	50~95歳、300名
=₩₽≠≠≠ □明→フ=8★Ⅲ★ /…									40.00 IF 40.45

COI局齢者ナータ ベース	未来社会 創造機構	0	0	0	0	0	0	0	50~95歳、300名
高齢運転者に関する調査研究(III) (高齢者講習データ)	自動車安全運転センター	×	0	×	0	×	×	0	68-90+歳・191名 (H26.3報告書)
運転行動データベーフ	一般社団法人人間生活工学研	v	~	~	\circ	~		\cap	20-71歳 97名, ドラレコデータ NEDOプロジェクト(H13〜H15

運転行動データベース	一般社団法人人間生活工学研 究センター	×	×	×	0	×	0	0	20-71歳 97名, ドラレコデータ NEDOプロジェクト(H13〜H15) 有償データベース(約1万円/データ)
The salisbury eye evaluation and driving study (SEEDS)	米国 (NHTSA)	0	0	×	Δ	×	0	×	67-87歳 1155名, 5days Driver Monitoring System (Round2)

The salisbury eye evaluation and driving study (SEEDS)	米国 (NHTSA)	0	0	×	Δ	×	0	×	67-87歳 1155名, 5days Driver Monitoring System (Round2)
Maryland Pilot Older Drivers study	米国 (NHTSA)	0	0	×	0	×	×	×	55-96歳,2508名(1996- 2003)

 \bigcirc

X

 \bigcirc

 \bigcirc

Factors Associated with

Driving Performace of

Older Drivers

Candrive II

米国

(University of Nebraska

カナダ

Team)

(Candrive II Research

ベース	創造機構								
齢運転者に関する調査研究(Ⅲ ₎ (高齢者講習データ)	自動車安全運転センター	×	0	×	0	×	×	0	68-90+歳・191名 (H26.3報告書)
									20-71歳 07夕 ドラレコデータ

人間特性の主な調査項目(意識、認知、視覚)

- ・運転に対する意識調査:日頃の運転状況、加齢変化の自覚・対処行動、運転スタイルなど
- ・認知機能:一般的な認知機能検査に加え、産総研式の認知加齢検査、有効視野検査など
- ・視覚機能:一般的な静止・動体・夜間視力に加え、詳細な視野とコントラスト視力を計測

項目		意識(アンケート)						認知機能				視覚機能				
手段	運転継続	事故・ヒ ヤリ	使用頻度	運転スタ イル	心理的負 担	運転変化	対処行動	注意機能	ワーキン グメモリ	タスクス イッチ	プランニ ング	静止視力	動体視力	夜視力間	視野	コントラ スト
日頃の運転	0	\bigcirc	\bigcirc													
DSQ				\bigcirc												
WSQ					\bigcirc											
運転変化						\bigcirc										
対処行動							\bigcirc									
MMSE									\bigcirc		\bigcirc					
TMT									\bigcirc		\bigcirc					
DHI								\bigcirc	\bigcirc		\bigcirc					
CRT運転適性 検査器								\circ								
AIST式認知的 加齢検査								\circ	\circ	\circ	\bigcirc					
動体視力計												0	\bigcirc			
夜間視力計														\bigcirc		
視野計															\bigcirc	
コントラスト																\circ

▶ 被験者A : 72歳女性, 運転歴27年, ほぼ毎日運転

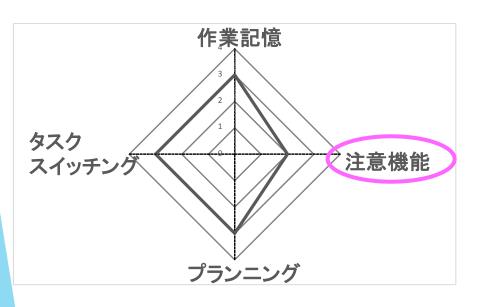


図1-1.認知的加齡特性検査(産総研式)

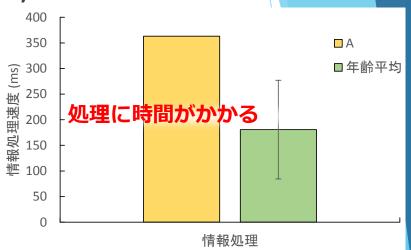


図1-2.UFOV(周辺視野の知覚)

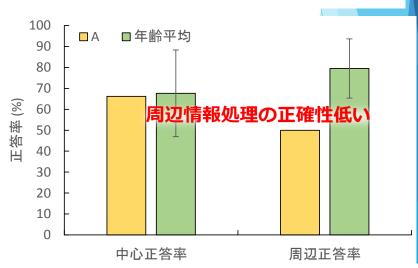


図1-3.側方警戒 (運転適性検査より)

▶ C: 64歳男性, 運転歴45年, ほぼ毎日運転

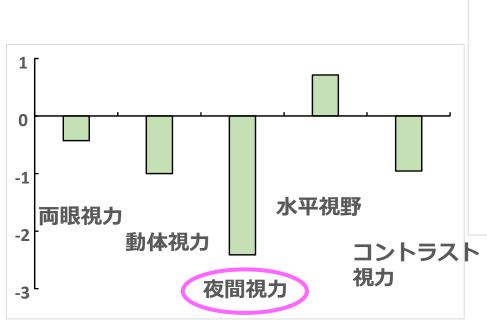
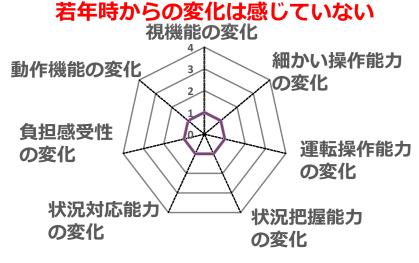



図2-1視覚機能の特性(高齢者平均比)

夜間運転支援の必要性あり, 変化の自覚と性格に配慮した支援へ

図2-2若年時との変化の自覚

運転スキルに自信があり, 几帳面

図2-3運転スタイルの意識

高齢者の機能低下を補完する支援開発シナリオ

Phase 1

成果報告2

認知(視覚特性の理解と定量化)

H26年度 両眼網膜映像の可視化

網膜映像のシミュレーション

Phase 2

運転時の体調モニタ・異常対応

視野欠損補完、 視認性向上の支援

H27年度テーマ

社会実装

① 支援システムの製品化

Phase 3

②コミュニティへ展開/ 高齢者講習の改定

応用

支援手法の開発

(機能低下を補完)

- ① 安心・安全に運転できる支援システム
- ② 運転能力維持・向上トレーニング

高齢者対応ドライバエージェント

H27年度~ モックアップ作成中

もう少し 減速して 下さい

基礎

ハンフリー視野計を

用いた視野欠損検出

高齢者の運転特性理解

運転のものさし作り、運転能力評価法・指標成果報告1

高齢者運転特性データベース (300名/年)

成果報告3

適 支 援

呼気センシング

負担の減少技術

オンライン運転支援 注意喚起、情報提示

運転者疲労を測定・

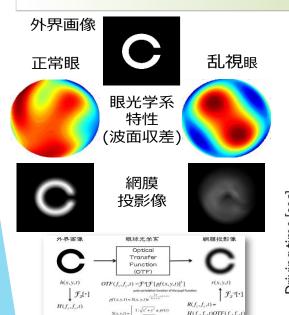
フェーズ I の成果報告 2

個人に特化した見落とし防止支援のための網膜投影可視化技術

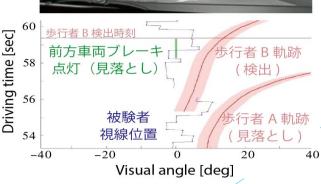
狙い

網膜疾患による罹患は加齢で急増.

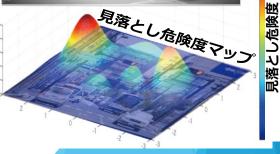
網膜で知覚されない外界像は見えないが、警報や正常部位への像表示は可能.

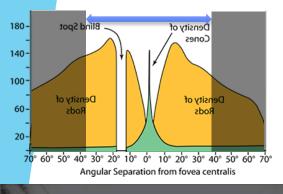

⇒ 個人毎の網膜投影の外界像を可視化 ⇒ 見落とし危険事象を予測し警報システムへ

*眼科学・情報工学・心理学分野の研究者と臨床医による学際的アプローチで推進


個人毎の"網膜投影像"可 視化ソフトウェア開発 ドライビングシミュレータ 操作時の視線移動を反映した 網膜投影像の可視化

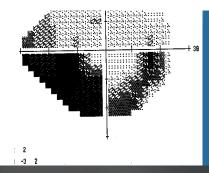
網膜投影像に基づく "見落とし危険度マップ"試作


病率 [%]



個人に特化した見落とし防止支援のための網膜投影可視化技術

網膜視細胞配列 空間標本化像 シミュレーション例


可視化視野範囲

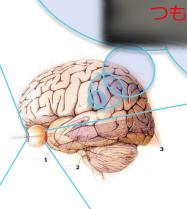
使用した高齢者の視野データ

正常視野眼の 網膜視細胞配列空間標本化像 一瞬暗くなるのは 瞬き 映像の大きなゆれは 視線移動 知覚される映像とは異る (知覚されるのは 脳がつくり出す幻像)

瞬き,視線移動は 同一データを使用 (正常眼被験者のもの)

視野欠損眼の 網膜視細胞配列空間標本化像

個人に特化した見落とし防止支援のための網膜投影可視化技術



眼 (網膜)で受容された映像を可視化することの重要性

網膜において, あるレベル以上の質で 受容されなかったものは見えない.

見えているつもりでも, それは脳が様々な 時空間補間機能によりつくり出した幻像

見えている

網膜視細胞配列空間標本化 像

脳での知覚 (予想)

この部位の情報は0

今後の対応

- ・網膜疾患患者の見落としと視線移動評価のDS実験 及び解析.
- ・個人に特化した見落とし危険度マップ作成 (危険警報や視野補完システムの開発へH/O)

高齢者の機能低下を補完する支援開発シナリオ

Phase 1

成果報告2

認知(視覚特性の理解と定量化)

H26年度 両眼網膜映像の可視化

網膜映像のシミュレーション

Phase 2

運転時の体調モニタ・異常対応

視野欠損補完、 視認性向上の支援

H27年度テーマ

社会実装

① 支援システムの製品化

Phase 3

②コミュニティへ展開/ 高齢者講習の改定

応用

支援手法の開発

(機能低下を補完)

- ① 安心・安全に運転できる支援システム
- ② 運転能力維持・向上トレーニング

高齢者対応ドライバエージェント

H27年度~ モックアップ作成中

もう少し 減速して 下さい

基礎

ハンフリー視野計を

用いた視野欠損検出

高齢者の運転特性理解

運転のものさし作り、運転能力評価法・指標成果報告1

高齢者運転特性データベース (300名/年)

成果報告3

適 支 援

呼気センシング

負担の減少技術

オンライン運転支援 注意喚起、情報提示

運転者疲労を測定・

呼気センシングディバイスの開発

自動運転

生体情報検出システム, HMIは知能化モビへ技 術移転⇒知能化モビリティへ技術展開

いつまでも暮らせるモビリティ

- 高感度地図
- NAVI
- 速度制御
- 運転制御

運転による

ストレスは無

【目指す姿】

ストレスセンサーは運転支援へ技術転移

運転者支援

運転者と共有、見守り

- 半自動運転切り替わり
- ・ 高齢者の身心ケア
- Human Machine Interface

【アプローチ】

運転疲労のセンシングのために、

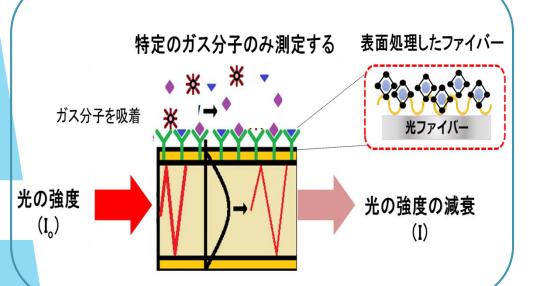
- 1. 呼気から疲労・ストレスのマーカーを探索
- 2. 呼気中の低濃度揮発性物質の 高精度センシングを技術開発する. *****

【センシングの目標】

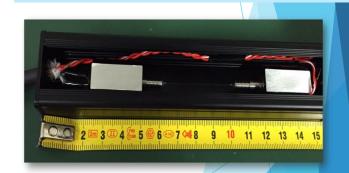
呼気中のガス分子が**計測可能なセンシ ング**として**、**

目標感度1ppm以下(フェーズ1)

呼気センシングディバイスの開発


【達成状況】

- ・感度:アンモニアガスにて、測定精度1~10ppm達成
- ・測定能力:濃度が10ppm以下は5分間で再測定が可能


<光ファイバーセンサーの特徴>

- ・表面処理した光ファイバーで特定のガス分子を吸着
- ・安価な可視光のLEDとアンプ回路を組み込んだフォトダイオードの検出器で構成

光ファイバーセンサー部分の測定原理

ガスセンサーのプロトタイプ

表面処理した光ファイバー

可視光LED (1百円)

フォトダイオード (約千円)

おわりに

安全に安心してもっと運転が続けられるために、 システムによる補完と自身の心身機能改善の両面から取組み(Phase 2)、早期 に社会実装できるように企業・機関と共同で開発を進める

Phase 1 Phase 2 Phase 3

認知・視覚特性の理解と定量化

H26年度 両眼網膜映像の可視化

ハンフリー視野計を 用いた視野欠損検出

網膜映像のシミュレーション

運転時の体調モニタ・異常対応

視野欠損補完、 視認性向上の支援

社会実装

- ① 支援システムの製品化 ② コミュニティへ展開/
- 高齢者講習の改定

応用

支援手法の開発

(機能低下を補完)

- ① 安心・安全に運転できる支援システム
- ② 運転能力維持・向上トレーニング

高齢者対応ドライバエージェント

H27年度~ モックアップ作成中 もう少し 減速して 下さい

オンライン運転支援
(注意喚起、情報提示)
フィードバック

運転者疲労を測定・除去、運転意欲の増加

基礎

高齢者の運転特性理解

運転のものさし作り、運転能力評価法・指標

個人の生体機能・運動行動のデータベース化(300名/年)

H26年度 150名分を実施・解析

ご清聴ありがとう ございました